Structure Reports Online

ISSN 1600-5368

Tong-Hua Bao^a and 7hen-Yu Hou^b*

^aSchool of Food & Biological Engineering. Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and ^bDepartment of Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China

Correspondence e-mail: houzhenyu1996@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.014 Å R factor = 0.053 wR factor = 0.129 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acta Crystallographica Section E

In the title complex, $(C_{18}H_{20}N_4)[HgI_2(C_7H_3NO_4)]$, the Hg atom exists in a distorted trigonal-bipyramidal geometry formed by two I atoms, one pyridine N and two carboxylate O atoms from a chelating 2,6-pyridinedicarboxylate ligand. Extensive hydrogen bonding between the carboxylate groups and the 1,1'-(butane-1,4-diyl)bis(1H-benzimidazol-3-ium) ion is present in the structure, as well as $\pi - \pi$ stacking interactions. The cation has a crystallographic centre of symmetry. In the anion, a crystallographic twofold rotation axis coincides with the Hg-N bond.

Received 5 March 2006 Accepted 8 March 2006

metal-organic papers

Comment

Interesting structures and properties have been reported for a number of proton-transfer metal complexes of pyridine-2,6dicarboxylic acid (H₂pdc), which were isolated from the reaction of the reagent with lanthanides and transition metals in the presence of Lewis bases such as pyridine-2,6-diamine, 1,10-phenanthroline, creatinine and imidazole (Fu et al., 2004; MacDonald et al., 2000; Moghimi et al., 2002; Moghimi, Sharif et al., 2005; Moghimi, Sheshmani et al., 2005). In these structures, H_2pdc acts as an N- and O-donor ligand to the metal ions, forming stable chelates. Previously, we have reported a novel proton-transfer iron(III) complex incorporating pyridine-2,6-dicarboxylate ligands and the flexible N-heterocycle 1,1'-(butane-1,4-diyl)bis(1*H*-benzimidazol-3-ium) ion $[(H_2$ bbbm)²⁺; Hou et al., 2006]. As an extension of our work on this series of complexes, we report here the crystal structure of the title mercury(II) complex, (I).

Complex (I) consists of discrete mononuclear $[HgI_2(pdc)]^{2-}$ anions and $[H_2bbbm]^{2+}$ cations (Fig. 1). The central Hg atom is five-coordinated by two I atoms, one pyridine N and two carboxylate O atoms from the deprotonated pdc^{2-} ligand, completing a distorted trigonal-bipyramidal geometry. The Hg^{II} atom lies in the plane of the pdc ligand, with the two I atoms lying above and below the plane. In the anion, a crystallographic twofold rotation axis coincides with the Hg-N bond.

© 2006 International Union of Crystallography All rights reserved

Figure 1

A view of (I), showing the numbering scheme employed. Displacement ellipsoids are drawn at the 30% probability level. H atoms are drawn with arbitrarily small radii. Atoms with the suffix A are related by the symmetry code $(1 - x, y, \frac{3}{2} - z)$ in the $[\text{HgI}_2(\text{pdc})]^{2-}$ anion and by $(\frac{1}{2} - x, z)$ $-y - \frac{1}{2}$, 1 - z) in the $[H_2bbbm]^{2+}$ cation.

Anions interact with the $[H_2bbbm]^{2+}$ cations to produce a hydrogen-bonded sheet structure by N-H···O hydrogen bonds (Table 2 and Fig. 2). A face-to-face separation of 3.552 (5) Å between the N2-containing imidazolium rings from two neighbouring $[H_2bbbm]^{2+}$ dications suggests the existence of π - π stacking interactions.

Experimental

1,1'-(Butane-1,4-diyl)bis(1H-benzimidazole) (bbbm) was prepared according to a literature method (Xie et al., 2000). A methanol solution (5 ml) of H₂pdc (16.7 mg, 0.1 mmol) was added dropwise to a methanol solution (5 ml) of HgI2 (22.7 mg, 0.05 mmol) and bbbm (29.0 mg, 0.1 mmol) to give a clear solution. Pink block-like crystals (52% yield) suitable for X-ray diffraction were obtained after one week. Analysis calculated for C₂₅H₂₃HgI₂N₅O₄: C 32.93, H 2.54, N 7.68%; found: C 32.74, H 2.65, N 7.55%.

Crystal data

$(C_{18}H_{20}N_4)[HgI_2(C_7H_3NO_4)]$	$D_x = 2.143 \text{ Mg m}^{-3}$
$M_r = 911.87$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 1415
a = 21.696 (4) Å	reflections
b = 15.158 (3) Å	$\theta = 2.1 - 25.7^{\circ}$
c = 8.9959 (18) Å	$\mu = 7.67 \text{ mm}^{-1}$
$\beta = 107.16 \ (3)^{\circ}$	T = 291 (2) K
$V = 2826.8 (11) \text{ Å}^3$	Block, pink
Z = 4	$0.20 \times 0.17 \times 0.17 \text{ mm}$

Data collection

D 1 OMA DT A DEV COD	070(:1 1 (0):
Bruker SMART APEX CCD area-	2/86 independent reflections
detector diffractometer	2157 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.045$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -26 \rightarrow 26$
$T_{\min} = 0.24, \ T_{\max} = 0.27$	$k = -18 \rightarrow 18$
7241 measured reflections	$l = -11 \rightarrow 11$

Figure 2

A view of the packing of (I). Thin dashed lines indicate the hydrogenbonding interactions. H atoms have been omitted.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.07P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.053$	+ 1.94P]
$wR(F^2) = 0.129$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2786 reflections	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
170 parameters	$\Delta \rho_{\rm min} = -1.56 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Hg1-N1	2.364 (8)	N2-C12	1.466 (10)
Hg1-I1	2.6755 (11)	N3-C11	1.341 (12)
N1-C2	1.318 (8)	N3-C10	1.373 (11)
N2-C11	1.341 (11)	O1-C1	1.239 (10)
N2-C5	1.379 (11)	O2-C1	1.291 (10)
N1 11-1 01	(7.20,(12))	C5 NO C10	127.5 (6)
NI-HgI-OI	67.39 (13)	C3=N2=C12	127.5 (6)
OI-HgI-OI	134.8 (3)	CII-N3-CI0	108.4 (7)
N1-Hg1-I1	118.95 (2)	C1-O1-Hg1	114.4 (5)
O1-Hg1-I1	99.28 (16)	O1-C1-O2	124.3 (7)
O1 ⁱ -Hg1-I1	102.18 (16)	O1-C1-C2	119.5 (7)
I1-Hg1-I1 ⁱ	122.10 (4)	O2-C1-C2	116.2 (7)
$C2-N1-C2^{i}$	120.8 (9)	N1-C2-C3	121.8 (7)
C2-N1-Hg1	119.6 (4)	N1-C2-C1	118.9 (7)
C11-N2-C5	109.2 (7)	N3-C11-N2	108.4 (9)
C11-N2-C12	123.1 (7)		

Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3B\cdots O2^{ii}$	0.86	1.71	2.568 (9)	174
Symmetry code: (ii) -	-x + 1, v, -z + z	1		

All H atoms were placed in calculated positions and were refined isotropically, with $U_{\rm iso}(\rm H)$ values constrained to $1.2U_{\rm eq}(\rm C,N)$ or $1.5U_{\rm eq}(\rm C)$, using a riding model with C-H = 0.93–0.97 Å and N-H = 0.86 Å. The maximum electron-density peak in the final difference map lies 1.78 Å from atom C7.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, A.-Y., Wang, D.-Q. & Liu, A.-Z. (2004). Acta Cryst. E60, m1372–m1373. Hou, Z.-Y. & Zhu, D.-M. (2006). Acta Cryst. E62, m1–m3.
- MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.
- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadah, R. K. (2002). *Can. J. Chem.* **80**, 1687–1696.
- Moghimi, A., Sharif, M. A. Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.
- Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160–169.
- Xie, X.-J., Yang, G.-S., Cheng, L. & Wang, F. (2000). *Huaxue Shiji*, **22**, 222–223. (In Chinese.)